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ABSTRACT 

The Joint Strike Fighter (JSF) program is the largest Department of Defense 

(DoD) military aircraft acquisition program to date.  The JSF will serve the Air Force, 

Navy and Marine Corps, as well as many of our key international allies.  In 1998, the 

DoD initiated the JSF alternate engine program in an effort to achieve cost savings, 

performance improvements, and other non-tangible benefits, similar to those achieved 

during the F-16 Great Engine War.   

Congress has periodically debated the pros and cons of the JSF alternate engine 

program, coming to no real consensus on the topic.  The most recent debate coincided 

with the FY2007 budget request, which resulted in the proposed cancellation and 

elimination of funding for the F136 program.  While Congress eventually restored the 

majority of the program’s funding for that year, the DoD has again proposed elimination 

of the program in its FY2008 budget proposal.  With a program of this magnitude, the 

savings and performance benefits to be gained are significant.  Before DoD decides to 

terminate the alternate engine program, a thorough and unbiased analysis should be 

performed to weigh the costs and benefits of the second engine program. 

This thesis is a Business Case Analysis (BCA) of the costs, benefits, issues, and 

effects associated with maintaining the JSF’s alternate engine program.  It compares the 

dual-source and sole-source scenarios with regard to the development, production, and 

life-cycle sustainment of the JSF engine.  The study also explores past DoD engine 

acquisition programs, including the highly successful dual-sourced F-16/F-15 engine, to 

establish a precedent for the potential monetary and non-monetary savings that can result 

from competition.  Finally, the thesis examines the non-quantitative impacts the 

program’s cancellation will have on the DoD, its allies, and the industrial base. 
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I.   INTRODUCTION 

A. SUBJECT OF THIS BUSINESS CASE  

This thesis is a Business Case Analysis (BCA) of the costs, benefits, issues, and 

effects associated with maintaining the JSF’s alternate engine program.  It compares the 

dual-source and sole-source scenarios with regard to the development, production, and 

life-cycle sustainment of the JSF engine.  The study also explores past DoD engine 

acquisition programs, including the highly successful dual-sourced F-16/F-15 engine, to 

establish a precedent for the potential monetary and non-monetary savings that can result 

from competition.  Finally, the BCA examines the non-quantitative impacts the 

program’s cancellation will have on the DoD, its allies, and the industrial base. 

B. BACKGROUND 

1.  Joint Strike Fighter Program Description 

Much of today’s U.S. fighter inventory consists of aircraft developed and 

produced in the 1970s.  Service-life exhaustion combined with escalating threats have 

resulted in all three services slowly retiring their current fighter aircraft.  The British 

Harrier fleet, which first flew more than 30 years ago, is encountering similar problems.  

(Fulghum & Butler, 2006)  The F-35 Joint Strike Fighter is being tagged to replace the 

aging aircraft, while also supporting the expanding requirements of a modern-day tactical 

fighter.  Specifically, the U.S. Air Force will employ it as a multi-role aircraft to replace 

the F-16 and A-10, and complement the F-22.  The U.S. Navy will use it as a “first day of 

war” strike fighter aircraft to complement the F/A-18E/F.  The Marine Corps will use the 

Short Take-off and Vertical Landing (STOVL) F-35 variant to replace the AV-8B and 

F/A-18A/C/D.  The United Kingdom’s Royal Navy and Royal Air Force will use the 

multi-role aircraft to replace the Sea Harrier and Harrier GR7.  

The origin of the JSF dates back to 1993 when a Bottom-Up Review (BUR) of the 

Multi-Role Fighter (MRF) and Advanced Strike Aircraft (A/F-X) programs concluded 

that a separate tactical aviation modernization program by each Service was not 



 
 

2

affordable.  Both programs were cancelled, and in their place the BUR initiated the Joint 

Advanced Strike Technology (JAST) program.  The goal of JAST was to establish the 

building blocks for the affordable development of the next-generation strike weapons 

system.  After a review of the JAST program in 1995, the DoD dropped the “T” in JAST 

and the JSF program began to emerge.  Continuing to grow, the JSF program was merged 

with the Defense Advanced Research Projects Agency (DARPA) Advanced Short Take-

off and Vertical Landing (ASTOVL) program in 1995.  The United Kingdom (UK), 

which was already collaborating on the DARPA ASTOVL program, joined the JSF 

program.  In the years following, the JSF program grew to its current status as the DoD’s 

largest military aircraft acquisition program to date.  It is a joint, multinational program 

involving the Air Force, Navy, Marine Corps, and eight international partners, including 

the UK, Denmark, Norway, the Netherlands, Canada, Italy, Turkey, and Australia.   

The vision of the JSF program is to “deliver and sustain the most advanced, 

affordable strike fighter aircraft to protect the future generations worldwide.”  (461 

FLTS, 2006, p.3)  The single-seat, single-engine aircraft is being designed to operate by 

itself or as part of a multi-platform operation.  It will be able to rapidly transition between 

air-to-surface and air-to-air missions while still airborne.  The design includes three 

variants: a conventional takeoff and landing (CTOL) variant for the Air Force; a carrier 

variant (CV) for the Navy; and a STOVL variant for the Marine Corps and UK.  The JSF 

is being designed to meet a wide range of operational requirements.  One of these 

requirements is an extended combat radius which will allow the pilot to be less dependent 

on air refueling and have significantly greater time on station.  Table 1.  lists some of the 

other Key Performance Parameters (KPP) of the F-35.  The requirement differences 

between the variants are primarily due to the differences in their missions.  For example, 

the STOVL variant will have a slightly shorter range because some of the space used to 

carry fuel is used instead to house the lift fan of the STOVL propulsion system.  The 

main differences in the carrier variant are associated with carrier operations.  For example 

its internal structure is very strong to withstand the high loading of catapult-assisted 

launches and tailhook arrested landings.  The carrier variant also has  
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larger wing and tailcontrol surfaces for low speed approaches to the carrier.  Larger 

leading edge flaps and foldable wingtip sections provide a larger wing area for increased 

range and payload capacity. 

 

Table 1.   JSF Key Performance Parameters 
KPP USMC USAF USN UK 
Radio Frequency Signature Low Observable 
Combat Radius (nautical miles) 450 nm 590 nm 600 nm 450 nm 
Sortie Generation (Surge / 
Sustained) 

4 / 3 3 / 2 3 / 2 3 / 2 

Logistics Footprint < 8 C-17 
equivalent loads 

< 8 C-17 
equivalent 

loads 

< 46,000 cu ft < 21,000 cu ft 

Mission Reliability 95% 93% 95% 95% 
Interoperability Meet 100% of critical, top-level Information Exchange Requirements 

Secure Voice and Data 
Vertical Lift Bring Back 2 x 1K JDAM,  

2 x AIM-120 
with reserve fuel 

N/A N/A 2 x 1K JDAM,  
2 x AIM-120 
with reserve 

fuel 
Maximum Approach Speed N/A N/A 145 knots N/A 

From:  GAO-06-391, 2006. 

 

2.  Joint Strike Fighter Propulsion Acquisition 

The future financial investment potential of the JSF propulsion system is 

significant considering the number of aircraft engines and spare parts to be purchased, 

along with lifetime support to sustain the engines.  It is expected that the DoD will 

develop, procure, and maintain over 2,443 JSF aircraft of the program’s life-cycle.  This 

doesn’t include the 2,000 to 3,500 additional aircraft expected in international sales.  

(Sullivan, 2007)  Given the scope of the program’s potential, Congress first expressed 

concern over a lack of engine competition on the JSF program at the fiscal year (FY) 

1996 defense authorization conference.  In that year, Congress directed the DoD to 

ensure the program “provides for adequate engine competition.”  Then in FY1998 it 

further directed the DoD to certify that “the Joint Strike Fighter Program contains 

sufficient funding to carry out an alternate engine development program that includes 

flight qualification of an alternate engine in a joint strike fighter airframe.”  (Bolkcom, 

2006)   
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In 1998, and again in 2002, DoD program management advisory groups 

conducted studies to determine the advantages and disadvantages for the alternate engine 

program.  In both years the advisory groups determined that “developing an alternate JSF 

engine had significant benefits in the areas of contractor responsiveness, industrial base, 

aircraft readiness, and international participation.”  (Sullivan, 2007, p.3)  The advisory 

groups also reported finding marginal benefits in the areas of cost savings and the ability 

to make future engine improvements.   

In August 2005, DoD awarded a $2.1 billion contract to the General Electric (GE) 

and Rolls-Royce Fighter Engine Team (FET) for the development and demonstration of 

an alternate engine system, designated the F136.  The requirement is for the F135 and 

F136 engines to be physically and functionally interchangeable.  They will share 

common modules, such as the exhaust and lift system, and will use many of the same 

components.  All three JSF aircraft variants will be able to use either engine.  The F136 

development program, which lags the F135 program by approximately five years, will be 

ready for procurement competition beginning in the year 2013.  (Amick, 2005) 

The competitive sourcing strategy for the JSF engine was succinctly summarized 

by Michael Sullivan, the Director of Acquisition and Sourcing Management at the 

Government Accountability Office as follows:   

According to current JSF program plans, beginning in fiscal year 2007, the 
program office will award the first of three annual production contracts to 
Pratt & Whitney for its F135 engine.  In fiscal years 2010 and 2011, 
noncompetitive contracts will be awarded to both Pratt & Whitney and to 
the Fighter Engine Team for the F136 engine.  Beginning in fiscal year 
2012, contracts will be awarded on an annual basis under a competitive 
approach for quantities beyond each contractor’s minimum sustaining rate.  
Full-rate production for the program begins in fiscal year 2014 and is 
expected to continue though fiscal year 2034.  (Sullivan, 2007, p.4) 

Congress has periodically debated the pros and cons of the JSF alternate engine 

program, coming to no real consensus on the topic.  The most recent debate coincided 

with the FY2007 budget request, which resulted in the proposed cancellation and 

elimination of funding for the F136 program.  While Congress eventually restored the 
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majority of the program’s funding for that year, the DoD has again proposed elimination 

of the program in its FY2008 budget proposal.  The advocates of the cancellation cite a 

savings of $1.8 billion over the Future Years Defense Plan (FYDP) with little operational 

risk.  Critics argue that the cancellation decision is being driven by immediate budget 

pressures rather than an analysis of the long term positive and negative aspects of the 

program.  Supporting the claim, Secretary of the Air Force, Michael Wynne, is reported 

to have said that “the idea of canceling the F136 came up during the QDR, in the course 

of attempts to identify ways to save costs at the Pentagon.”  (Bolkcom, 2006, p.2)   

3.  Pratt & Whitney F135 Engine Description 

The F135 engine, which is being developed specifically for the JSF, is an 

evolution of the F119-PW-100 turbofan engine that currently powers the F-22 Raptor.  It 

integrates the proven F119 core with a high-performance six-stage compressor, single-

stage turbine unit and new low-pressure stool.  It also features an advanced prognostic 

and on-condition management system that provides “maintenance awareness, autonomic 

logistic support, and automatic field data and test systems.”  (P&W, 2007) 

The engine is currently in the System Development and Demonstration (SDD) 

phase.  The first CTOL F135 engine test occurred in October 2003 and the first STOVL 

engine test followed in April 2004.  The first flight of the CTOL-variant JSF aircraft, 

powered by the F135 engine, took place in December 2006.  To date, over 2,000 hours 

have been accumulated on the F135 test engines.  (P&W, 2007) 

The F135 engine represents a maintenance-focused design.  According to the 

company’s website, the engine has approximately 40 percent fewer parts, which 

improves the engine’s supportability, maintainability, and reliability.  In addition, all line-

replaceable components (LRCs) on the engine can be removed and replaced with a set of 

six common hand tools.  Finally, the F135 has a 50 percent lower infrastructure support 

requirement compared to current engines.  (P&W, 2007) 
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4.  General Electric / Rolls Royce F136 Engine Description 

The F136 engine, which lags the F135 in development by approximately five 

years, has had the advantage of being able to design the engine to match as closely as 

possible the final aircraft configuration.  The F136 engine consists of a three-stage fan, 

five-stage compressor, a three-stage low-pressure turbine section, single-stage high-

pressure turbine, and a radial augmentor.  The F136 team is cooperating with the F135 

team in the development of common propulsion system components.   

The first F136 CTOL engine was successfully tested in July 2004 and testing on 

the first F136 STOVL engine began in Feb 2005.  First flight of the F136 engine on a 

joint strike fighter aircraft is planned for 2009.  (GE, 2007)   

The F136 engine is being jointly developed by GE and Rolls-Royce.  In 2002, the 

two companies formed the “Fighter Engine Team” company.  Its charter is to develop, 

deploy, and support the F136 engine for the JSF program.  GE, which has responsibility 

for 60 percent of the engine program, is developing the compressor, coupled turbine, 

controls and accessories, structures, and the augmentor.  Rolls-Royce, with 40 percent of 

the program, is responsible for the fan, combustor, low-pressure turbines and gear boxes.  

(GE, 2007)   

C.   SCOPE AND METHODOLOGY 

This study uses a cost-benefit structure to examine and compare the quantitative 

and non-quantitative factors involved.  The financial costs are compared using life-cycle 

cost analysis adjusted for the time value of money.  Sources of data include the JSF joint 

program office, congressional budget data, data collected through government-sponsored 

assessments, contractor provided data, and historical data from other relevant engine 

acquisition programs.  Data collected are analyzed with the intent of quantitatively 

comparing, where possible, the costs and benefits of the alternate engine program.  

Qualitative data are used to complete the assessment of overall costs and benefits. 

 



 
 

7

D.   GOVERNING MANDATES 

To achieve the goals of affordability, supportability, and safety, the JSF program 

intends to use a combination of competition, contract incentives, and performance-based 

logistics (PBL) to reduce engine operating and support costs.  The DoD has entered into 

numerous PBL contracts in recent years, including on the C-17 and F/A-18 programs, 

and intends to use PBL extensively in the JSF program.  (Ahern, 2007) 

As directed by the 2004 Quadrennial Defense Review (QDR), the military 

departments have adopted a performance based logistics (PBL) strategy to increase 

weapon system readiness through the use of integrated logistics chains and public/private 

partnerships.  To facilitate “best value” assessments of product support strategies on new 

and legacy systems, the office of the Undersecretary of Defense developed a set of 

consistent BCA guidelines to be used when assessing product support strategies.  These 

guidelines were used in this assessment of the alternate engine program to support the 

Joint Strike Fighter.  The BCA guiding principles applied in this study are listed below.  

(USD(AT&L), 2004) 

• All BCAs will be based on warfighter-stated performance requirement(s), 

documented in Performance Based Agreements (PBAs).   

• BCAs will be conducted to assess changes from existing product support 

strategies for legacy systems and to support the product support strategy for 

new weapon systems.  Over time, BCAs will need to be updated or repeated to 

validate the approach taken to support future plans.   

• BCAs will evaluate all services or activities needed to meet warfighter 

performance requirements using “best value” assessments.  Best value is the 

expected outcome that, in the Department’s consideration, provides the 

greatest overall benefit in response to requirements.  The assessments will 

include cost per output, performance measures, life cycle costs, and risk 

management.  The value added in terms of benefits and outcomes of all 

services and activities will be identified.   
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• BCAs will continue through the life cycle process with oversight to ensure 

reassessment at appropriate trigger points, including life cycle costs (LCC) 

updates; Reduced-Total Ownership Costs activities; and/or continuous 

improvements actions.  The Military Services will evaluate product support 

strategy performance at appropriate decision points.   

• The cost and performance baselines for legacy systems will be determined by 

historic experience and costs.  The cost baseline will include all appropriate 

government and/or contractor costs, including indirect costs, overhead, and 

handling fees.   

• BCAs will include risk assessment of expected performance, supply chain 

responsiveness, and surge capabilities.  Consideration of performance and cost 

risk will explicitly consider contract versus organic risk management, 

financial accountability, and recovery actions.  The risk assessment should 

address the probability of and confidence level of the following events 

occurring: poor performance, and cost growth.   

• BCAs will be developed using information provided by all appropriate 

product support stakeholders, including government and industry providers.  

In order to maintain a competitive environment, industry participation will be 

determined in accordance with the Federal Acquisition Regulation (FAR).   

• BCAs will be conducted using analytic tools approved by the Services.   
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II. LITERATURE REVIEW 

A.   INTRODUCTION 

Sourcing strategy has been a frequent topic of research over the years.  In 

examining these studies, the one clear conclusion is that there is not one clear answer.  

There is no panacea.  But there does appear to be agreement that the most effective 

sourcing strategy is dependent on the characteristics and scope of the program, and the 

specific contractors involved.  In this section, research comparing sole-source, multiple 

sourcing, and parallel sourcing strategies is presented in an attempt to draw out general 

trends and situational factors that may aid in the examination of sourcing for the JSF 

engine.  But first, a real-world and particularly relevant example is presented regarding 

the first Great Engine War between GE and Pratt & Whitney.  For all practical purposes, 

the competition strategy used in that engine program is considered a success, despite the 

fact that it has not been repeated in the acquisition of any other engine or major weapon 

system.  The Great Engine War case study is juxtaposed with the JSF program to reveal 

the many similarities and lessons learned that should be useful in making the decision to 

adopt or cancel the JSF alternate engine program.   

B.  F-16 PROPULSION ACQUISITION–THE GREAT ENGINE WAR 

1. Background 

In March 1970, after a rigorous source selection process, Pratt & Whitney was 

awarded the contract to design, develop, and test the F100 engine for the Air Force’s F-

15 aircraft.  Pratt & Whitney was chosen over GE in large part because it was felt the 

company had a better understanding of the engine/inlet compatibility phenomena that had 

been plaguing the F-111 at the time.  Then in 1975, the Air Force selected General 

Dynamics to produce the F-16.  Since the Air Force planned to power the F-16 with Pratt 

& Whitney’s F100 engine, it found itself completely dependent on Pratt & Whitney for 

all of its high performance fighter engine needs.  (Camm, 1993) 
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Initially the F100 engine was well received by pilots who particularly liked the 

maneuverability, acceleration, and rate of climb the F-100 engines afforded them.  But as 

the flying hours accumulated, major problems began to arise.  The two most significant 

were “stall stagnation” and short life-cycles with high maintenance costs.  Stall 

stagnation occurred under certain operating conditions and required pilots to shut down 

and restart the engine in flight.  While this was a danger in the two-engine F-15, it was a 

significant safety of flight issue in the single-engine F-16.  Additionally, the engine’s 

short cycle time between depot overhauls and high maintenance requirements drove up 

its operating costs.  (Camm, 1993)   

In his book, The Air Force and the Great Engine War, R.W. Drewes (1987) 

characterized Pratt & Whitney’s reaction to the Air Force’s attempts to get the problems 

with the F100 engines resolved as “stubborn resistance.”  The Air Force’s perception was 

that Pratt & Whitney was “more interested in generating profits through contract changes 

than in making the engine perform properly.”  (Drewes, 1987, p.55)  The company 

contended that they were under no contractual obligation to fix the problems since the 

F100 had been designed and qualified to the Air Force’s specifications.  If the Air Force 

wanted to add requirements to improve performance, those changes represented an 

additional tasking and were subject to additional charge.  Although Pratt & Whitney did 

slowly improve the F100, it was still unreliable and costly to operate and maintain.  

Relations between the Air Force and Pratt & Whitney deteriorated quickly and the Air 

Force began looking for alternative solutions.   

In a RAND study comparing the two engines, author F. Camms (1993) described 

the problems GE was facing during the same time period.  It had lost out to Pratt & 

Whitney in the competitions to provide engines for the F-14, F-15, and F-16; leaving the 

company essentially locked out of the U.S. market for fighter engines.  In 1975, in a last-

ditch effort to get back in the market, GE used its own funds to develop a demonstrator 

engine called the F101X.  The company hoped to use the engine to persuade the Navy to 

re-engine its F-14s, but the Navy was not interested.  The Air Force, however, was  
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interested.  It was exactly what they were looking for—a possible alternative to the F100 

and, more importantly, a potential threat they could use to get better performance out of 

Pratt & Whitney.  (Camm, 1993) 

The Alternate Fighter Engine competition was officially launched, once again 

pitting Pratt & Whitney against GE.  Throughout the competition, according to Camms, 

Pratt & Whitney maintained is attitude of defiance, while GE strove to be a responsive as 

possible to the Air Force’s needs.  On February 3, 1984 the decision was announced—a 

split award, 75 percent (or 120 engines) to GE and 25 percent (or 40 engines) to Pratt & 

Whitney.  In addition, this represented only the first year’s buy.  The Air Force would re-

compete the contract each year, allowing contractors to improve the terms of their offers 

on a wide variety of factors. 

In a press release, the Air Force stated that GE had offered “lower overall support 

costs, had ensured better procurement of spare parts through an outstanding plan for 

second sourcing and re-procurement of engine components, and had offered an excellent 

warranty. “  (Drewes, 1987, p.126)  In essence, GE had been more responsive to the Air 

Force’s requirements.  But even more significant was that both contractors’ proposals 

brought substantial benefits to the engine program in the areas of engine operability, 

supportability, and performance.  The new engines would be warranted to be twice as 

durable as the current F100, free from rapid-throttle-movement worries and from 

afterburner flameouts, and almost completely relieved from needing extensive ground 

trimming.  In addition, support costs were expected to decrease by 50 percent.  (Drewes, 

1987) 

Although typical development issues arose throughout the years, both 

development programs produced engines that operated as expected, on schedule, and 

without cost overruns.  The annual competitions brought improvements in many areas, 

most notably a 30-50 percent reduction in cost per flight hour, maintenance man-hours, 

and engine removals per 1000 flight-hours.  (Camm, 1993)  Operational benefits included 

unrestricted throttle movement, improved war-time surge capability, improved thrust, and 

lower fuel consumption.  Through the use of competition, the balance of power had 
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shifted to the Air Force, allowing it to get many contractual changes at no cost to itself or 

to trade one change for another on more favorable terms.   

2. Research Studies of the Great Engine War 

In his Naval Postgraduate School master’s thesis titled, “The Next Great Engine 

War: Analysis and Recommendations for Managing the Joint Strike Fighter Engine 

Competition”, Karl Amick conducted a review of the research studies done in the years 

following the Great Engine War in an effort to apply the lessons learned to future engine 

competitions.  His research centered on six representative studies.  He found that while 

each study had a slightly different focus, they all concluded that competition was the 

“right thing to do.”  Amick highlights the following themes across the six studies: 

• The competition was a great success 

• Cost savings was not a factor in the success 

• Competition improved manufacturer responsiveness 

• Competition should be pursued in future acquisition programs 

For the most part, the studies he examined were unanimous in all categories 

except cost savings.  Amick’s findings are summarized in Table 2.  Error! Reference 

source not found.A complete description of his findings can be found in Amick, 2005.   
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Table 2.   Summary of Research Studies on the Great Engine War 
Summary of Studies 

Successful 
Competition? Cost Saving? Responsiveness? 

Future 
Applications? 

Reports Yes No Large Small Inconclusive Improved Unimproved Yes No 

Metamorphosis of Business 
Strategies and Air Force 
Acquisition Policies in the 
Aerospace Propulsion 
Industry:  Case Study of 
the “Great Engine War” 
(Jon Steven Ogg) 

√  √ √   √ 

The Air Force and the 
Great Engine War (Robert 
W. Drewes, Col, USAF) 

√ √  √  √  

Analysis of the Air Force 
and the Great Engine War 
(Victoria Mayes) 

√  √ √  √  

Alternate Fighter Engines 
Competition Study (Jeffrey 
A. Hoover) 

√ √  √  √  

The Development of the 
F100-PW-220 and F110-
GE-100 Engines: A Case 
Study of the Risk 
Assessment and Risk 
Management (Frank 
Camm) 

√  √ √  √  

Fighter Engine 
Competition: A Study of 
Factors Affecting Unit 
Price (Brian R. Leginus) 

√  √ √  √  

From:  Amick, 2005.   

 

3. Lessons Learned and General Observations 

The following lessons learned and general observations can be made regarding 

the Great Engine War between GE and Pratt & Whitney:   

Maintaining competition, as the Air Force did in this case, may not always be 

possible.  Competition will work best on programs with high total volume over the life of 

the program and high annual production rates.  These factors are necessary in order to 

justify the fixed costs of supporting two manufacturers.  The precise breakeven point, 
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where the cost of single versus multiple sources is equal, will vary depending on the 

program and the contractors involved.  (Drewes, 1987) 

Competition shifts the balance of risk in a development program.  In essence, it 

shifts the perceived risk away from the government and onto the contractors.  With each 

contract competition, the government can redistribute market share among the 

contractors, thus increasing the contractors’ risks while at the same time decreasing the 

government’s risk by reducing its dependence of under-performing contractors.  (Camm, 

1993) 

Competition can increase contractor responsiveness to government or military 

service needs.  GE demonstrated this during the first year production competition.  In 

addition, when unexpected events occur, the government can expect greater success in 

getting an attractive settlement, thereby reducing the probability and size of negative 

effects of contractor performance.  (Camms, 1993) 

Competition reduces the likelihood of opportunistic or exploitive behavior on the 

part of the contractor.  This creates a lower risk situation for the government, thereby 

reducing the cost of monitoring contract compliance.  While it does not completely 

eliminate the need for monitoring, it greatly simplifies it and allows for more flexible and 

creative program management.  (Camm, 1993) 

While the use of competition discourages opportunistic contractor behavior, it 

does not completely eliminate it.  In the case of the Great Engine War, it became clear to 

the contractors that the Air Force valued competition enough that it was not willing to 

withdraw completely from its relationship with either GE or Pratt & Whitney.  In effect, 

both contractors came to realize that they could engage in some opportunistic behavior 

without fear of the Air Force withdrawing entirely.  An example of this occurred during 

the first year production competition when Pratt & Whitney priced its offer to strongly 

encourage the Air Force to buy all of its engines from Pratt & Whitney.  It accomplished 

this by setting it pricing scale in such a way that any engines purchased from GE would 

significantly increase not only the cost of each Pratt & Whitney engine, but the warranty 
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price too.  In order to keep the competition going and keep both contractors under 

pressure, the Air Force ended up accepting the increase in price.  (Camm, 1993) 

Competition is not without costs.  In the Great Engine War, full-scale 

development of two engines essentially doubled the cost to the government of creating 

the capability.  While certain economies were created by the competition, they did not 

fully offset the costs incurred in developing two engines.  The real financial benefits 

come during the production lifespan.  (Camm, 1993) 

4. Key Differences between JSF and F-16 Engine Acquisitions 

Can the success achieved during the Great Engine War be repeated on the JSF 

program?  The programs have many similarities.  For example, both the JSF and F-16 

programs have the advantage of high domestic and international sales volume.  This 

contributes significantly to each programs’ affordability.  When it comes to choosing the 

most beneficial acquisition strategy for the JSF engine, however, decision makers should 

pay careful attention to the differences between the programs.  In his master’s thesis, 

Amick (2005) discusses the key differences between the programs and the potential 

positive and/or negative impacts of each.  These are summarized below.   

The Great Engine War was born out of dissatisfaction with Pratt & Whitney’s 

performance on the F100 engine contract.  The JSF engine competition, on the other 

hand, was congressionally mandated from the outset.  Each contractor has been able to 

plan accordingly, and in the end, without the same motivations that drove the Great 

Engine War, contractor responsiveness to the services’ needs may be lacking.   

The JSF requirement is for engines that are physically and functionally 

interchangeable.  This was not the case on the F-15 and F-16 programs.  The net effect 

may be a reduction in number of performance gains as the two competitors no longer feel 

the “performance race” pressure they did during the Great Engine War.  On the JSF 

program, the two competitors will need to cooperate with each other to extent much 

greater than they did in the past engine war.  This will surely stunt performance growth 

over the lifetime of the program.   
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The development of the two JSF engines has been referred to as “Coopetition”--

an amalgamation capturing the ideas of the cooperation of the two companies in design 

integration and then, later, the competition when production begins.  This may have the 

net positive effect of reducing the development cost of the F136 since its design will be 

finalized after both the F135 and aircraft designs have been stabilized.   

Since the two engines will be physically and functionally interchangeable, only 

one support system will be required to meet the customer’s maintenance, supply, and 

training needs.  In fact, all the Lockheed Martin flight-line support equipment is already 

designed to support both engines.  This reduces the logistic impact of having two engines 

for the same aircraft.  It also allows the customer (the government) to easily transition 

from one engine variant to the other.  In essence this means there will be a little to no 

switching cost to go from one engine to the other.   

The JSF engines will be the first with onboard Prognostic and Health 

Management sensors, allowing maintainers to predict engine component failure and react 

proactively.  This capability will improve aircraft availability and help streamline 

maintenance efforts.  This will have the positive effect of reducing the engines’ 

development risk and support costs.   

C.   COMPETITIVE VERSUS SOLE-SOURCE PROCUREMENTS 

1. Competing Points of View 

The most obvious take away from the research comparing source strategies is that 

there is much disagreement regarding the advantages of competitive sourcing.  When it 

comes to choosing a sourcing strategy, the tradeoff is between the benefits gained from 

competition and the costs associated with having multiple sources.  The benefits of 

competition include the potential for lower price, improved quality, and competitive 

pressures that speed the learning process.  On the other hand, the costs of utilizing 

multiple sources include tooling and start-up costs at the second facility, diminished 

economies of scale resulting from split purchases, and a possible slowdown in learning-

curve effects due to a lack of competitive pressure.   
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W. Edwards Deming leads the group of practitioners advocating sole-source 

procurement.  Point Four of Deming’s celebrated Fourteen Points urges buyers to 

minimize total cost by working with a single supplier.  He states that “a long-term, tightly 

integrated, relationship with a sole source is the route to improved quality and lower total 

cost.”  (Richardson and Roumasset, 1995, p.71)  It has also been traditional Japanese 

practice to establish exclusive long-term relationships with a single supplier.  They argue 

that the added cost of establishing these relationships of increased buyer-supplier 

coordination will be more than offset by the reduced costs of rework, scrap, and warranty 

claims and the added benefit of higher-quality products.   

M. Porter leads the argument for competitive sourcing.  He recommends 

competing multiple sources against one another to “assure low price, high quality, and 

the lowest total cost.”  (Richardson and Roumasset, 1995, p.72).  Porter recommends the 

following: 

• Increase the buyer’s bargaining power by keeping the number of sources 

sufficient to ensure competition but small enough to be an important buyer to 

each source 

• Select suppliers who are especially competitive with each other and divide 

purchases between them  

• Vary over time the proportion of purchases awarded to suppliers to ensure 

they do not view it as an entitlement 

• Solicit occasional proposals from new suppliers in order to test market prices 

and gather technological intelligence  

Advocates of competitive sourcing claim the problem with investing so heavily in 

a sole source is that is increases the buyer’s dependence on the supplier.  The funds 

invested to establish the relationship are sunk costs which equate to switching costs that 

reduce the buyer’s ability to threaten the supplier with a loss of business.  With little or 

no competitive pressure, and without the threat of losing business, the suppliers can exert 

power over the buyer by way of increased prices, lower quality, and lower performance.   
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2. Competitive versus Sole-Source Procurements with Regard to Cost 
Savings 

Over the years, there have been numerous studies on the benefits of competitive 

procurements with specific regard to cost savings.  In his paper titled, “A Review of the 

Literature: Competition versus Sole-Source Procurements”, W.N. Washington attempts 

to gather and compare the results of these studies in order to draw useful conclusions for 

modern day acquisitions.  In researching the topic, he discovered two general categories 

of studies on the topic:  simple comparison studies and multiple factor analyses.  In the 

simple comparison studies, cost savings were consistently found associated with 

competition programs, although the amount of savings varied widely from 10 to 67 

percent.  Washington concludes that these studies are of limited value in assessing cost 

savings in competitive procurement because they “failed to take into account all the costs 

associated with the competition process, such as the cost of conducting the competition, 

setup costs for the new contractor, special tooling and government-furnished equipment, 

and the time value of money to set up the new contractor.”  (Washington, 1997, p.174)  

Even given these omissions, and the inconsistency of results between the studies, there 

did appear to be a general level of cost savings associated with competition, particularly, 

he found, regarding the procurement of spare parts.   

The second category of studies Washington examined, multiple factor analyses, 

were more comprehensive in their handling of the factors affecting procurement costs.  

Many of the studies he examined were master’s thesis from the Air Force Institute of 

Technology.  Unlike the earlier, simpler studies, these studies were less eager to declare 

grand estimates of cost savings associated with competition.  And in some instances, 

competition was not found to be beneficial.  The general conclusion was that cost savings 

in competitive procurements was dependent on many factors, including the maturity of 

the technology or system being acquired, the number of qualified suppliers, the 

complexity and scale of the item being acquired, and the size of the government’s 

purchase.  The studies also discovered several industrial base issues influencing 

production costs that should also be considered in the decision to pursue sole or 

competitive sourcing, including production rate, production quantity, time required to 
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stabilize design, capacity utilization, requirement for special production skills or 

facilities, and proprietary data rights.  (Washington, 1997)  In addition to these costs, the 

studies found several costs associated with competition that must be taken into account 

when determining if competitive sourcing will really save money.  These include: 

• Additional source selection costs incurred by both the government and the 

contractor 

• Second source development costs, such as special tooling and test equipment, 

and the cost of transferring technical data to the new source 

• Learning curve losses if quantities are split between several sources 

• Increased contract administration costs 

• Increased technical data administration costs incurred to maintain and update 

more than one source 

• Company-funded research and development costs that must be recaptured by 

the original developer 

Based on his research, Washington concluded the following.  First, there appears 

to be some rationale supporting competitive sourcing, but not all competitive 

procurements produce savings; and those that do seem to produce less than 25 percent 

savings.  Second, there are several factors that must be considered when choosing 

between sole and competitive sourcing.  These include production quantity, item 

complexity, capacity utilization of the industry involved, the requirement for special 

skills, and the maturity or availability of data regarding the item being procured.  Third, 

decision makers should perform a cost-benefit analysis before choosing competitive 

sourcing to determine if any real cost savings will result.  Finally, Washington concluded 

that competition is “probably the best choice for acquisition of low-dollar-value spare 

parts required in considerable quantity, or for component parts and systems that are 

jointly and extensively used by private industry.” (Washington, 1997, p.183)   
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3. The Effects of Sole-, Multiple-, and Parallel-Sourcing on Supplier 
Performance 

In their paper entitled, “Sole Sourcing, Competitive Sourcing, Parallel Sourcing: 

Mechanisms for Supplier Performance,” authors Richardson and Roumasset (1995) use 

an agency theory model to determine the conditions under which the three selected 

sourcing strategies appear to be superior.  The first strategy is the traditional sole-

sourcing strategy.  To represent competitive sourcing, the authors differentiate between 

multiple and parallel sourcing.  Multiple sourcing occurs when two or more sources 

compete against one another to supply the same item.  Parallel sourcing, which originated 

from Japanese practice, occurs when a firm simultaneously maintains a relationship with 

more than one supplier producing the same or similar items.  Normally only used by large 

buying firms, parallel sourcing’s appeal is that it appears to provide coordination and 

quality control benefits normally attributed to sole sourcing, while maintaining 

competitive pressures comparable to multiple sourcing.   

In their study, Richardson and Roumasset analyzed each sourcing strategy using 

agency cost theory.  This theory asserts that firms will organize in such a way as to 

minimize total agency costs.  In the realm of buyer-supplier relationships, agency costs 

refer to the costs associated with activities undertaken to ensure supplier performance, as 

well as the costs incurred if the supplier performs badly.  These activities include 

investment in the buyer-supplier relationship, monitoring performance, and administering 

rewards and penalties.  In their analysis, Richardson and Roumasset define the superior 

sourcing strategy as the “one that provides the lowest total agency costs and therefore the 

greatest profit to the buyer.”  (Richardson and Roumasset, 1995, p.74)  Adjustable 

parameters in their model included:  labor price, unit production cost, cost of 

coordination, cost of inspection, fixed setup cost, other setup costs, cost of handling 

returns, and fixed production costs. 

Richardson and Roumasset concluded that the best sourcing strategy depends on 

the situation and that increased buyer-supplier coordination combined with competition 

appears to be the most cost-effective mechanism for achieving high supplier 
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performance.  They found that no one method works in all circumstances, but they were 

able to make some general observations (Richardson and Roumasset, 1995): 

• When the priority is supplier performance (e.g. quality), parallel sourcing is 

superior to sole sourcing.  If setup (switching) costs are also high, multiple 

sourcing is also superior to sole sourcing.  In general, when poor supplier 

performance is even modestly costly, either parallel sourcing or multiple 

sourcing provides a higher level of supplier performance at a lower total cost.   

• The added costs of coordinating with more than one supplier are offset by the 

increased effectiveness resulting from competitive pressure.  Coordination 

combined with competition seems to be the most cost-effective mechanism for 

achieving high supplier performance. 

• In general, parallel sourcing is superior to multiple sourcing.  This is because 

parallel sourcing provides improved buyer-supplier coordination while still 

retaining the credible threat of lost business (i.e. switching to another 

supplier). 

• If high fixed setup costs cannot be avoided, the advantage may shift to sole 

sourcing.  This is because the high cost of setting up parallel or multiple 

suppliers may outweigh the advantages to be gained from competition.  The 

authors point out, however, that supplier performance (e.g. quality) in this sole 

sourcing scenario is unlikely to be superior to parallel or multiple sourcing.     

Although they seem to favor the competitive sourcing strategies, the authors 

pointed out three factors that, if present, would help ensure high quality performance 

from a sole source.  The first is “reputation effects” where a supplier may value a good 

reputation and as a result provide high performance in order to increase business with this 

or other potential buyers.  The second is a situation where the supplier is in a highly 

concentrated industry where they are extremely dependent on the buyer’s business.  

Finally, the sole-source supplier is likely to provide high quality performance if there is a 

situation of mutual dependence where the supplier’s performance strongly affects the 
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buyer’s competitiveness, which in turn strongly influences the supplier’s business.  In 

other words, “if the supplier’s fortunes are strongly tied to the buyer’s, there may be an 

incentive for better performance.”  (Richardson and Roumasset, 1995, p.81) 

D.   CHAPTER SUMMARY 

From the research reviewed in this section it is clear that competition has the 

potential to yield significant benefits in the acquisition of defense weapons systems.  The 

magnitude of the benefits, however, is highly dependent on several variables regarding 

the particular type of program, the political situation at the time, the state of the supplying 

industry, the contractors themselves, and the size and duration of the acquisition.  The 

conclusion drawn from the research that is more applicable here is that a cost-benefit 

analysis should be conducted to assess the real savings that can be obtained from the use 

of competitive sourcing.   
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III. METHODS AND ASSUMPTIONS 

A.   ALTERNATIVE SOLUTIONS AND DATA 

Two primary solutions are considered in this business case analysis.  The first is a 

sole-source scenario in which Pratt & Whitney is awarded a sole-source contract for the 

duration of the JSF program.  The second is a competitive scenario in which contracts 

will be awarded based on an annual competition approach starting in 2012.  Furthermore, 

since learning curve cost savings can be a significant factor in production costs, and since 

the amount of learning curve cost savings is dependent on the number of units produced, 

the specific competitive scenario evaluated is the “worst case” scenario of 50:50.  In 

other words, Pratt & Whitney produces an average of 50% of the aircraft engines and 

GE/Rolls-Royce the other 50%.  In the Sensitivities, Risks, and Conditions chapter, the 

competitive scenario of 70:30 is evaluated to determine the impact a learning rate 

advantage would have on the results.  The following table summarizes the scenarios 

examined in this analysis.   

 

Table 3.   Summary of Production Scenarios Considered 
 

Percentage of Production 

Scenario Description Pratt & Whitney GE/Rolls-Royce 

1 Sole-Source 100 0 

2 Competition – 50:50 50 50 

3 Competition – 70:30 70 

30 

30 

70 
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B. SCOPE OF THE CASE 

Data used in the computation of life-cycle costs was obtained from the JSF Joint 

Program Office (JPO) and from studies performed by the General Accounting Office 

(GAO), Institute for Defense Analysis (IDA), and Cost Analysis Improvement Group.  At 

the time of this study, the JSF JPO was preparing for LRIP contract negotiations with GE 

and Pratt & Whitney.  Due to the proprietary nature of the data used in the negotiations, 

the program office could not provide updated cost or learning curve estimates.  Where 

necessary, reasonable assumptions are made (e.g. the learning rate was estimated at five 

percent).  All assumptions are conservative in nature and are in keeping with those used 

in other studies.  All assumptions are clearly annotated.  The comparison of life-cycle 

costs offered here attempts to present the data in an unbiased manner using reasonable 

assumptions of industry and market behavior.   

C. FINANCIAL METRICS 

1. Life-Cycle Cost Analysis 

The production scenarios included in this analysis are compared using life-cycle 

cost (LCC) analysis.  LCC includes the total cost of the system and any relevant 

supporting activities throughout the system’s planned life cycle.  In the case of the 

alternate engine program, this includes all future costs associated with research, design 

and development, engine production, aircraft fielding, operation and support, and 

retirement and disposal.  Since the purpose is to compare the alternatives, rather than 

calculate a total cost, the cost factors that would be the same under either scenario are 

eliminated.  As a result, the scenarios are compared based on the following cost factors: 

• Remaining system development and demonstration costs 

• Production costs – including all recurring unit fly-away costs 

• Initial standup costs – including spares, training, manpower requirements, and 

depot standup 
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2. Learning Curve Savings 

The basic concept behind the learning curve is that as the total volume of units 

produced doubles, the cost per unit decreases by a constant percentage.  These cost 

reductions occur for several reasons, such as increased familiarization with production 

procedures, improvements in work flow, and improved tooling.  Although there are 

several conditions and situational factors that may affect the rate of learning, and hence 

the amount of cost savings generated, in general the more units that are produced, the 

more efficient production becomes.  In terms of the JSF engine program, in a sole-source 

arrangement one contractor will produce all of the engines.  By having all of the 

production activity, that contractor will achieve the highest achievable learning rate.  The 

more production is split between two contractors, the fewer number of engines each will 

produce, and hence the fewer number of engines each can “learn” from.  To represent 

these learning rate improvements in the life cycle cost comparison, a conservative five 

percent learning rate is used.   

3. Net Present Value 

The net present value of the life-cycle costs is computed to reflect the time value 

of money.  A discount rate of seven percent is used based on Office of Management and 

Budget (OMB) guidance on conducting benefit-cost analysis of Federal Programs.  

(OMB, 2006)  Discount periods are in years to reflect the annual contract competition.   

D. MAJOR ASSUMPTIONS 

The following assumptions are made during the calculation and comparison of 

life-cycle costs:   

• Sunk costs are not included in the comparison.  Most notably this includes 

monies already spent on system development and test.  Sunk costs are defined 

as those costs incurred through FY2007.   

• Calculated costs reflect U.S. only costs but include the production quantity 

benefits of the anticipated foreign military sales.  Production costs and 
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learning rate savings are calculated based on 3089 engines.  This includes 

2443 engines for the U.S. aircraft, and 646 engines for the aircraft sold via 

foreign military sales.  Initial spares are included under initial standup costs.   

• For ease of comparison with other studies, dollar amounts reflect fiscal year 

(FY) 2002 dollars.   

• The engine production cost is $10.569 million in FY2007 dollars.  

(SAF/FMB, 2006)  When adjusted to FY2002 dollars, this amount is $9.12 

million.  This figure is used for both the F135 and F136 engines. 

• Initial standup costs include initial spares (assumed to be 15 percent), training, 

manpower, and depot standup. 

• The engine competition and its anticipated cost benefits begin in FY2012.   

• The percentage of savings due to competition was applied only to production 

costs.   

• For net present value calculations, a discount rate of seven percent is used.  

• Sustainment costs required to maintain fielded aircraft are based on engine 

flight hours costs and usage rates.  Sustainment costs are not considered 

because the number of aircraft and cost per flight hours would be the same 

under either scenario.   
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IV. BUSINESS IMPACTS 

A. LIFE-CYCLE COST COMPARISON 

The DoD’s argument for cancelling the alternate engine program centers around 

an immediate cost savings of $1.4 billion, which is the approximate amount remaining on 

the SDD contract for that engine.1  However, when comparing the two production 

alternatives in terms of cost, the true additional cost of the alternate engine is higher than 

$1.4 billion.  In addition to the increased RDT&E costs associated with developing two 

engines rather than one, there are numerous other cost increases that would occur under 

the two-engine scenario.  Fielding one engine will require training, manpower, manuals, 

and the standup of maintenance depot(s) and an associated logistics supply line.  Fielding 

two engines will increase all of these cost elements.  Even if executed in the most 

streamlined and efficient manner, the increased cost of fielding two engines rather than 

one will be unavoidable.  To accurately compare the sole-source and competition 

scenarios, therefore, a life-cycle cost comparison is needed.   

While there are many cost factors to be considered when calculating a program’s 

life-cycle cost, for example RDT&E, production, initial standup, operation, sustainment, 

and disposal, the life-cycle cost comparison in this evaluation focuses on only those costs 

that will differ under a two-engine scenario.  Specifically, the cost elements included in 

the comparison are SDD, production, and initial standup costs.  Given that the number of 

aircraft and the cost per flight hour are the same under each scenario, differences in 

operation and sustainment costs should be inconsequential and are therefore not included.  

Similarly, disposal costs are not considered since the same number of engines will exist 

under each scenario.   

 

                                                 
1 Following SASC hearings in March 2006 regarding the cancellation of the alternate engine program, 

Congress added $408 million to the FY2007 budget to continue the program for another year.  (CRC 
RL33405, 2006)  At the time of the hearings, $1.8B remained on the SDD contract for that engine.  In this 
evaluation, monies spent through FY 2007 are considered sunk costs and not included in the analysis.   
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Table 4.  shows the estimated SDD, production, and initial standup costs for each 

scenario.  Again, the competition scenario is based on each engine team winning an 

average of 50 percent of the contract awards.  Tables showing the derivation of the 

production costs for each scenario are provided in Appendix A. 

 

Table 4.   Comparison of Costs between the Sole Source and Competition Scenarios 
 

Cost (FY02$B) F135 Sole-Source Competition (50:50) 
SDD (left to go) 1.00 2.40 
Production 16.77 17.65 
Initial Standup Costs 3.20 3.33 

TOTAL: 20.97 23.38 
DIFFERENCE:  + 2.41 (or 10.31%) 

    

  

It is often the case that investments made early in a program’s life-cycle result in 

savings many years, or even decades, later.  The F-35 engine, which has production 

currently planned out to 2034, will no doubt follow a similar pattern.  For that reason, a 

net present value (NPV) calculation is included to account for the time value of money.  

A comparison of the NPVs for each scenario is shown in Table 5.   

 

Table 5.   Comparison of Net Present Values (NPVs) 
 
NPV (FY02$B) F135 Sole-Source Competition (50:50) 
SDD (left to go) 0.85 2.03 
Production 6.94 7.31 
Initial Standup Costs 2.60 2.70 

TOTAL: 10.39 12.04 
DIFFERENCE:  + 1.65 (or 13.70%) 

  

  

As shown above, the competition alternative will cost approximately $2.41 billion 

more than the sole-source alternative.  The difference in SDD costs is directly related to 

the fact that two RDT&E efforts are required, one for each engine.  The increase in 

production costs stems from a loss of learning curve benefits if engine production is split 

between the companies.  Although the same number of engines will be produced under 
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each scenario, in the sole-source arrangement Pratt & Whitney will produce every engine, 

thus allowing the company to maximize the cost savings possible through learning rate 

improvements.  The more engine production is divided, the less each company can save 

through learning rate improvement.  This topic is discussed more under Non-Quantitative 

Costs.  Finally, the initial cost of standing up two engines will increase due to a 

requirement for two training programs, two sets of manuals, two depot standups, etc.   

Simply concluding, however, that the sole-source scenario will save the 

government $2.41 billion over the competition scenario, is not an accurate cost 

comparison of the two solutions.  As demonstrated during the Great Engine War, 

competition often leads to savings, particularly in the area of production.  Under the 

pressures of competition, each company will seek ways to reduce production costs in 

order to make itself more attractive in the next round of contract awards.  Therefore, to 

more accurately evaluate the two alternatives, some amount of savings must be 

incorporated into the computations.  It is particularly illustrative to calculate the 

percentage of savings necessary for the two solutions to breakeven.   

A breakeven analysis is shown in Appendix B.  In the analysis, a fixed percentage 

of savings is applied to each year’s production costs, then that amount is adjusted to 

account for the time value of money using a net present value calculation.  To find the 

breakeven point, the percentage of savings is adjusted to find the amount of savings 

required for the NPV of the competition solution to equal that of the sole-source solution.    

The result of the breakeven analysis is that a 26.45 percent savings is required for 

the two scenarios to be equal in terms of net present value.  According to interviews 

conducted with defense and industry experts by the Government Accountability Office, 

26.45 percent is at the top of the reasonable range of potential savings achievable through 

competition.  (GAO-07-656T, 2007)  For comparison, Table 6.  shows how the results 

vary for different percentages of savings. 
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Table 6.   The Effect of Savings Percentage on the NPC Comparison 
 

NPV($FY02B)2 Percent 
Savings (%) Sole-Source Competition (50:50)

Difference 
($B) 

0 10.39 12.04 1.65 
5 10.39 11.73 1.34 
10 10.39 11.41 1.02 
15 10.39 11.10 0.71 
20 10.39 10.79 0.40 
25 10.39 10.48 0.09 

26.45 10.39 10.39 0.00 

The takeaway from the life-cycle cost analysis is that an additional investment of 

$2.41 billion may be required as a result of the alternate engine program; however this 

investment can be largely, if not completely, recouped through the savings to be gained 

by the competition.     

B. NON-QUANTITATIVE BENEFITS 

1. International Relations 

To help achieve the JSF program goal of “affordability”, international 

participation and foreign military sales have been an integral part of the program from the 

beginning.  The eight international partners have pledged $4.6 billion towards the 

development of the JSF aircraft.  This equates to 10 percent of the total development 

costs.  The U.K., who is a level one partner on the program, has invested $2 billion of 

that international contribution, or 8 percent of the total development costs.  Israel and 

Singapore have both signed letters of intent to join the program and contribute $50 

million, while Poland is reportedly considering a foreign military sales investment of $75 

to $100 million in the JSF program.  (Bolkcom, Apr 2006) 

a. International Alliances 

The importance of maintaining a good relationship with our international 

partners is particularly significant in today’s defense environment.  The continuing trend 

                                                 
2 Includes SDD, production, and initial standup costs 
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towards downsizing in the U.S. industrial base means increased reliance on foreign 

technology in the future; the same holds true for our partners.  The JSF program offers 

opportunities to advance our alliances, most notably by awarding work on the F-35 to 

foreign companies.   

Some friction already exists between the DoD and several of the JSF 

foreign partners over the quality and quantity of work that has been awarded to their 

companies; in particular Denmark, Italy, the Netherlands, Norway, and Turkey have 

expressed their dissatisfaction.  (Bolkcom, Apr 2006)  Not surprisingly, the U.K. is upset 

over the proposed cancellation of the F136 alternate engine which is being co-produced 

by GE and the British company, Rolls-Royce.   

The U.K. is dissatisfied with canceling the second engine for a few 

reasons.  First, although they are a level one partner on the program and have contributed 

$2 billion, they were not consulted about the engine decision.  (Procurement, 2007)  

Second, the F136 engine, which is three years behind the Pratt & Whitney engine in 

development, will likely have greater thrust.  This would be particularly beneficial in the 

short-takeoff, vertical landing JSF models the U.K. will be buying.  Finally, the 

GE/Rolls-Royce partnership could be worth billions of dollars in sales for British 

companies over the 20 year production run.  (Procurement, 2007)   

U.K. officials expressed their frustration to the Senate Armed Services 

Committee in March 2006.  Lord Peter Drayson, the U.K. military procurement chief, 

even went so far as to warn that his country “would not buy any of the aircraft unless it 

had the technology the British needed to fight on their terms.”  (Cahlink, 2006)  This 

highlights an issue relevant to all the partner nations--namely that they have invested 

their money in the program and expect in return an aircraft that will meet their unique 

needs and allow them to fight on their own terms.  Providing a choice of engines is one 

clear way to do that.   
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b. Foreign Military Sales 

The benefits of an engine competition also extend to foreign military sales.  

This is evidenced by the fact that 20 years after the great engine war, competitive 

pressures still exist and are influencing sales of F-15 and F-16 engines in the international 

market.  For example, although U.S. F-15s are powered by Pratt & Whitney F100 

engines, in 2002 South Korea selected the GE engine to power its F-15 fleet, and in 2005 

Singapore followed suit, selecting the GE engine over the Pratt & Whitney model.  

Similarly, while GE engines power a large proportion of U.S. F-16s, Pratt & Whitney has 

dominated engine sales to international F-16 customers.  (Bolkcom, Apr 2006)   

The benefits of having more than one engine source are threefold.  First, 

international customers reap the same competitive benefits, reduced operational risk, 

increased performance, improved readiness, and lower costs.  This makes the aircraft 

more attractive and therefore more exportable.  Second, the foreign customer has the 

ability to choose the engine that best suits the mission and operational scenario in which 

they will utilize the aircraft.  This again makes the aircraft more attractive to potential 

customers.  Finally, both the U.S. industrial base and DoD continue to benefit as the 

advantages gained through competition are perpetuated thanks to foreign sales.   

2. Industrial Base 

 While in the past there existed four or five major U.S. producers capable of 

providing aircraft and engines, today only Pratt & Whitney and GE manufacturer fighter 

aircraft engines.  If the alternate engine for the JSF is cancelled, Pratt &Whitney will 

receive a sole-source contract that could be worth over $100 billion over the life of the 

JSF program.  (DeWine)  Moreover, the cancellation would effectively create a “winner 

take all” scenario, not only for the JSF program, but potentially for any future tactical 

aircraft engine program. Reducing the industrial base to only one supplier may have long-

term effects on both the industry and national security.    

 GE currently dominates in the commercial aircraft engine market, with 50 percent 

of the market share.  It also has current and future engine opportunities in cargo and 
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tanker aircraft, helicopters, and large unmanned aerial vehicle programs.  In other words, 

the company will not go out of business if the alternate engine program is cancelled.  

However, when it comes to tactical aircraft engines its prospects are much more limited.  

The company currently builds and maintains engines for the Navy’s F/A-18E/F, and 

supports the F110 engine series for domestic and international F-15 and F-16 customers.  

However, production in these fighter engine programs is on the decline.   

 For all practical purposes, there is only one fighter engine program now and for 

the foreseeable future—the JSF engine program.  Before very long, if a company is not 

involved in the JSF engine program, it will not be involved in the fighter engine business.  

And while commercial engines have some similar qualities with fighter engines, they are 

very different.  For example, commercial engines are generally designed for fuel 

efficiency, not performance.  They do not use afterburners and their thrust-to-weight 

ratios are very different from fighter engines.  Therefore, to produce and maintain a 

fighter engine requires a team of engineers and scientists tailored for that purpose.  If the 

F136 engine is cancelled, there is no rationale for GE to sustain the unique capabilities 

and resources needed to design, develop, test and produce high-performance fighter 

engines; a fact they expressed to the Senate Armed Services Committee in March of 

2006.   

 If the alternate engine program were cancelled, and then sometime in the future 

the DoD requested GE to design and build an alternate engine for the JSF, GE would face 

many challenges and incur much expense to reinstate the program.  The F136 engine 

program currently trails the F135 engine program by three years.  This lead would grow 

with every year that GE was out of the business.  (Bolkcom, Apr 2006)  GE also has no 

other engine in the same thrust class from which to pull resources and expertise.  

Essentially, it would have to rebuild the team of engineers and resources, at great expense 

to the DoD.   

 The bottom-line is that relying on a sole engine supplier for the JSF aircraft, 

which is a single-engine airplane designed for multiple missions for use by multiple 

services and nations, creates undesirable risk both for the DoD and the industrial base.  
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Investing a relatively small amount now in an alternate engine may reap large benefits in 

the future and help guarantee a healthy and competitive industrial base capable of 

providing the DoD with the competitive benefits of lower costs, increased performance, 

reduced operational risk, improved readiness, and increased foreign military sales.     

3. Reliability and Performance  

In addition to cost savings, the great engine war is credited with increasing engine 

reliability, improving performance, and increasing military value.  Many critics have 

argued that while there were benefits of the F-16 engine competition, the industry and 

technological factors that existed at that time, which made the competition successful, are 

not present today.  One area, in particular, that is frequently cited as the reason that 

competing the engines is unnecessary is reliability and performance.  Specifically, that 

engine reliability and performance in general have improved significantly from what they 

were back then.  In fact, the F-16 mishap rate has dropped from ten per 100,000 hours in 

1996 to one per 100,000 hours is 2006.  (SASC, 2006)  Given this, they argue that any 

gain to be achieved through competition with regards to reliability and performance will 

be small and therefore not worth the investment.  In this section, that argument is 

analyzed and ultimately refuted.     

a. Sole-Sourcing Will Create Unprecedented Vulnerability 

The F-35 program has been hailed as the largest DoD acquisition program 

to date, both in terms of dollar value and number of participating services and partner 

nations.  With the planned U.S. purchase at 2458 aircraft, and foreign sales already 

predicted over 2150 aircraft, there is the potential for F-35 production to top 5000 

aircraft.  This far exceeds production quantities of all other U.S. aircraft platforms.  Table 

7.  shows production quantities for several recent aircraft programs.  Only the F-16 comes 

close to the production magnitude of the F-35 program and only after all four F-16 

variants and foreign F-16 sales are combined.3  The F-35 program is often compared to 

                                                 
3 According to the Lockheed Martin website, over 4000 F-16s have been produced in total.  This 

figure includes all versions of the aircraft and both U.S. and foreign military sales.   
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the F-22 program, but in fact the size of the two programs (2458 versus 183 aircraft) is 

vastly different.  While critics argue that any reliability and performance gains will be 

small compared to those during the great engine war, when taken in proportion to the size 

of the F-35 program, those gains may result in billions of dollars of savings over the life 

of the program.   

Table 7.   Aircraft Production Quantities 
 

Aircraft Production Quantity (for U.S. Only) 
F-35 2458 

F-16 C/D 1421 
F-16 A/B 795 

F/A-18E/F 494 
C-130 AMP 465 

F-15 C 408 
F-15 A/B 360 

F-15 E 203 
C-17 190 

F-22A 183 
F-15 D 61 

From: 1. GAO-06-391, 2006.  2. www.fas.org/man/dod-101/sys/ac/f-16.htm.  3. Bolkcom, 2007.  4. 
www.fas.org/man/dod-101/sys/ac/f-15.htm.  5. Bolkcom, 2007.  6. www.fas.org/man/dod-
101/sys/ac/f-15.htm. 

Traditionally, the U.S. and its allies have relied on several aircraft 

platforms to meet their tactical airpower needs.  A benefit of that approach is that if a 

problem is encountered that results in the grounding of a particular fleet of aircraft, there 

are other platforms available with similar capabilities that could, at least temporarily, fill 

the void.  This may not be possible to the same extent under the JSF and F-22 programs.  

Collectively, the two aircraft have been designed to replace several aircraft types, 

including the F-16, F-15, F/A-18, A-10, A-6, and AV-8B.  By 2030, the JSF and F-22 

will represent 85% of U.S. and allied tactical airpower.  (SASC, 2006)  This creates a 

vulnerability that is unprecedented.  Since both the F135 and the F-22’s F119 engine are 

currently produced by Lockheed Martin, cancelling the F136 program will leave the U.S. 

and its allies dependent on one engine source.  Further, since the F135 engine is a 

derivative of the F119 engine, a problem in the basic engine design could potentially 

affect both fleets.  Competing the F135 and F136 engines greatly reduces this risk.  Given 
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the magnitude of the consequences of failure, spending $1.8 billion to develop an 

alternate engine seems well worth the expense.   

b. Too Early to Forecast F135 Reliability 

To help ensure and predict an engine’s reliability, aircraft programs 

conduct many thousands of hours of ground and flight testing.  Based on the testing 

conducted to date, DoD officials have asserted that the reliability of the F135 engine has 

now been sufficiently demonstrated and the operational risks reduced to the extent they 

can reasonable predict the success of the F135 engine, and defend the decision to cancel 

the alternate engine program.  However, looking more closely at the amount of testing 

that has been conducted on the F135 engine it is too early to forecast the engine’s 

reliability.  At the time of DoD’s decision to cancel the alternate engine program, the 

F135 engine had undergone 4,600 hours of ground testing, which is roughly one-third of 

the planned ground test hours.  In addition, at the time of the decision, the F-35 aircraft 

had not yet flown.  The first dedicated operational testing that will accurately measure the 

JSF aircraft’s operational effectiveness and suitability is not even planned until 2011.  

(Sullivan, 2006)  Figure 1.  shows that propulsion performance flight testing does not 

start in earnest until 2009.  Based on this it can be concluded that placing a high level of 

confidence in the F135 at this point, based solely on the testing conducted to date, is 

premature. 
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Figure 1.   Planned Propulsion Performance Flight Testing and First Flight for the Three 
JSF Variants (From: GAO-06-391, 2006) 

 

c. Comparisons to F-22 Engine of Limited Value 

The predicted reliability of the F135 engine is frequently based on 

comparisons with the F-22’s F119 engine, of which it is a derivative and shares up to 

70% commonality.4  Proponents of a sole-source scenario point out that in 12 years, the 

F119 engine has undergone 42,000 hours of ground and flight testing, and 16,000 hours 

of operational time with no engine-related losses and no groundings due to engine-related 

problems.  (SASC, 2006)  They further predict that the F135 propulsion system will have 

a 30% to 50% improvement in reliability and safety compared to the F119.  (England, 

2006)  Comparisons with the F119 engine, however, are premature and possibly 

                                                 
4 Lockheed Martin claims 70% commonality between the F119 and F135 engines; however officials at 

Rolls-Royce, who is co-producing the F136 engine with GE, disagree with this assessment claiming instead 
that it is more like a new engine than a derivative.  They feel this is corroborated by the fact that Lockheed 
Martin is spending $4 to $5 billion to develop the F135 engine, versus $3.7 billion by GE/Rolls-Royce to 
develop the F136.  (SASC, 2006)   
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misleading for two primary reasons.  First, the F119 engine has not yet reached maturity, 

and second, the two engines will be used under different operational scenarios.   

DoD officials have argued that the good performance of the F-22’s F119 

engine has sufficiently reduced the risk that would be incurred in relying on a single 

source for the F-35’s engine.  Even if the claim of 70% commonality between the two 

engines is accepted, the F119 engine has not yet reached maturity.  The F-22 has 

completed approximately 20,000 operational engine hours, which represents only 10% of 

the 200,000 hours typically considered sufficient for system maturity.  (Sullivan, 2006)  

As a point of comparison, when the great engine war commenced, the Pratt & Whitney 

F100 engine had already accumulated 2,000,000 hours of operational service (100 times 

more than the F119).  (Bolkcom, 2006)  Moreover, even with this extensive number of 

hours, numerous improvements in engine reliability and performance were attained 

during the 25 year competition.   

In addition, while performance of the F119 has been good, the engine is 

not currently meeting several reliability goals.  For example, the engine’s mean time 

between maintenance actions was expected to be 100 hours at its initial service release in 

2002.  However, as of April 2006, the engine was averaging only 60 hours between 

maintenance actions.  The performance requirement at system maturity in 2010 is 200 

hours mean time between maintenance actions, however F-22 program engine officials 

predict the engine will achieve only 100 hours between maintenance actions--50% of the 

performance requirement.  (Sullivan, 2006)  

Comparing the F-22 and F-35 engines is also misleading because the two 

aircraft have distinctly different missions and will be flown under different operational 

scenarios.  First, there are three versions of the F-35, each with different operational 

concepts.  Second, the F-35 is being designed to rapidly transition between different air-

to-surface and air-to-air missions while still airborne.  Conversely, the F-22 will primarily 

serve as an air-to-air platform, flying at high speed and high altitude.  Based on what is 

known about engine operation, the operational environment of the F-22 will put 
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considerably less stress on its engine.  Therefore, comparisons of the two aircraft engines 

must be qualified to put the association in proper context.      

d. Lessons Learned from Other Aircraft Programs 

Comparisons made between the F-35 and the F-22 and F/A-18E/F, both of 

which have only one engine source, may also be inappropriate because the latter aircraft 

are equipped with two engines, while the F-35 will have one engine.  History has shown 

that single engine aircraft are inherently subject to higher risk than two-engine aircraft.  

For example, between FY1990 and FY2004, the single-engine F-16 experienced 80 Class 

A engine-related mishaps.  That equates to a mishap rate of 1.31 per 100,000 flight hours.  

The two-engine F-15, on the other hand, experienced 21 Class A engine-related mishaps 

during that same period, for a rate of 0.64 per 100,000 flight hours.  (Bolkcom, Apt 2006)   

Adding to the complexity, the F-35’s STOVL variant will be capable of 

short and/or vertical takeoff and landings.  To achieve this, the F-35 engine will be 

augmented with a lift fan, roll posts, drive shaft, and three bearing swivel module.  The 

engine will be subject to different operational stresses and conditions.  Its nearest 

equivalent is the AV-8 Harrier, which has one of the highest mishap rates of all military 

aircraft.  Moreover, unlike most aircraft types where mishaps are most frequently related 

to human error, two-thirds of the Harrier’s mishaps have been related to aircraft failures.  

(Bolkcom, Apr 2006)   

e. Engine Maturity Reflected in Contract Type 

The DoD’s confidence and the prime contractor’s assurance that the F135 

is little more than a derivative of the F119 engine, are belied by the choice of contract 

type being used for the acquisition.  Specifically, the initial production F-35 engines will 

be purchased using a cost reimbursement type contract.  According to FAR Subpart 16.3, 

cost reimbursement contracts are “suitable for use only when uncertainties involved in 

contract performance do not permit costs to be estimated with sufficient accuracy to use 

any type of fixed-price contract.”  (FAR 16.3)   
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f. F136 Design Changes Easier to Incorporate 

In any program involving the design and development of a product or 

system, it is generally accepted that changes to the system’s design are easier and less 

expensive to incorporate when they are made early in the program.  The later design 

changes are made in the life of a program, the most costly they become, both in terms of 

dollars and schedule delays.  This time-tested fact is another advantage of the F136 

engine, whose development is approximately three years behind the F135 engine.  Based 

on lessons learned from the F135 engine, program managers may desire to make changes 

in hopes of increasing thrust or improving operational reliability.  Similarly, if weight 

growth continues to be an issue for the F-35’s STOVL variant, the DoD may wish to 

counter it with increased engine/propulsion capabilities.  Relatively speaking, 

accommodating changes in the engine’s design will be easier and less expensive with the 

F136 engine than with the F135.   

4. Cost Control 

Considering the magnitude of the JSF program, where the engine procurement 

costs alone may exceed $100 billion over the life of the program, failure to control costs 

could be devastating to the nation’s purse strings and negatively affect Congress’s ability 

to fund the programs necessary to provide adequately and effectively for the nation’s 

defense.  History has shown that when competition exists, contractors put significant 

energy into reducing and controlling costs.  This is a fact that has not gone unnoticed in 

Washington.  During the March 2006 Senate hearings on the alternate engine program, 

Senator John Warner, the senior Republican member of the Senate Armed Services 

Committee, stated that, “a competitive environment is essential in the judgment of many 

of us to the Government’s ability to control costs, especially in a program of the 

magnitude of the JSF.”  (SASC, 2006)   

Many believe that the cost savings to be gained through competition of the F-35 

engines could range from 10 to 20 percent.  (Sullivan, 2007)  Taking the conservative 

savings estimate of 10 percent still yields a total savings on the order of $10 billion over 
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the life of the program.  Even Pratt & Whitney, an obvious supporter of a sole-source 

arrangement, publically disclosed that they believe there were $3 billion saved during the 

Great Engine War as a result of the competition.  (SASC, 2006)  The bottom-line is that 

even by the most conservative estimates, the savings that can be gained on a program of 

this great magnitude more than overcomes the short-term investment required to develop 

a second engine.   

C. NON-QUANTITATIVE COST  

1. Logistics Support 

The F135 and F136 engines are specifically designed to have identical external 

interfaces to the JSF aircraft, making them interchangeable in terms of form, fit, and 

function.  Internally, however, the two engines differ significantly and have many unique 

parts, including fans, turbines, combustors, and compressors.  As a result, supporting and 

maintaining two engines will require more resources and funding, than supporting only 

one.  Two separate spares pipelines will be required, along with two separate 

maintenance depot capabilities. Additional training, engine manuals, tools, and test 

equipment will also be required to maintain two engines.  Future configuration changes to 

the aircraft and/or engine will be more complex and may involve compromises in the 

design solution to accommodate both engines.  Finally, the costs of engineering and 

software support will be higher.  All in all, in the area of logistics support, a sole-source 

arrangement has the advantage both in terms of the amount of resources required for 

support and maintenance, and the simplicity of life-cycle management. 

 D. ANALYSIS OF ALTERNATIVES  

Table 8.   provides a summary comparison of the quantitative and qualitative 

advantages of the sole-source and competition scenarios.   
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Table 8.   Summary Comparison of the Sole-Source and Competition Alternatives 
 

ADVANTAGE: 

ITEM SOLE-SOURCE COMPETITION 

 
QUICK-LOOK 

EXPLANATION 

Life-Cycle Costs √  

An additional investment of 
$2.41 billion may be required 
as a result of the alternate 
engine program, however this 
investment can be largely, if 
not completely, recouped 
through the savings to be 
gained by the competition. 

International 
Alliances  √ 

The U.K. is a level one JSF 
partner and has contributed 
8% of JSF development costs.  
There is the potential for 
billions of dollars in sales for 
British companies via the 
GE/Rolls-Royce partnership 
on the F136 engine.   

Foreign Military 
Sales  √ 

Having a choice of engines 
makes the aircraft more 
attractive to foreign customers 
who will be able to choose the 
engine that best suits their 
operational needs and 
doctrine.    

Industrial Base  √ 

The JSF engine is the only 
tactical fighter engine 
program planned for the 
foreseeable future.  Cancelling 
the second engine reduces the 
number of tactical engine 
suppliers to one.  This creates 
an undesirable level of risk 
given the magnitude of the 
JSF program. 



 
 

43

ADVANTAGE: 

ITEM SOLE-SOURCE COMPETITION 

 
QUICK-LOOK 

EXPLANATION 

Reliability & 
Performance 

Risk 
 √ 

The JSF program is of 
unprecedented size.  Relying 
on a sole-source increases the 
reliability and performance 
risk of the engine.  The F135 
engine is based on the F-22 
engine which is still immature 
and not meeting its reliability 
goals.  Comparisons to F-22 
and F/A-18 aircraft also 
invalid due to differing 
missions and number of 
engines per aircraft.   

Cost Control  √ 

When the magnitude of the 
JSF program is put in 
proportion, poor cost control 
could be devastating and 
negatively affect Congress’s 
ability to fund other programs 
necessary for national 
security.  History has shown 
that cost control is most 
effective in a competitive 
environment.      

Logistics 
Support √  

Supporting and maintaining 
two engines is more complex 
and requires more resources 
and funding.  In a sole-source 
scenario, only one logistics 
pipeline and deport 
maintenance capability is 
required; one type of tools and 
manuals; one type of training; 
one type of test equipment; 
etc. 
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V. SENSITIVITIES, RISKS, AND CONTINGENCIES 

One clear conclusion from this and the other studies of its kind is that the 

financial advantage of one solution over another can change depending on the factors 

considered and assumptions made.  Some of these factors include the learning rate, the 

cost of producing the engine, discount factors and inflation rates, and the number of 

engines included in the computation.  In this study, all of those factors were based on 

open-source data, dictated by DoD mandates regarding BCA analysis, or chosen to 

facilitate comparison with other studies.   

One factor that is particularly difficult to predict, and is therefore worthy of 

additional analysis, is the net percentage of contract awards each engine team will 

ultimately win.  This study has thus far examined the 100:0 case in which Pratt & 

Whitney produces 100 percent of the engines (i.e., the sole-source scenario), as well as 

the 50:50 case in which each engine team averages 50 percent of the contract awards.  To 

examine the sensitivity of this factor, the 70:30 case is useful.  The life-cycle cost, NPV, 

and breakeven results for the 70:30 case are provided in Table 9.  .  Two sets of results 

are provided: one for the case that Pratt & Whitney produces 70 percent of the engines 

(labeled Competition 70:30), and one for the case that the GE/Rolls-Royce team produces 

70 percent (labeled Competition 30:70).  Data from the sole-source and 50:50 cases are 

included for reference.   

 

Table 9.   Total Cost and NPV Data for each Production Scenario 

Case Total Cost ($B)* NPV ($B) 
Savings Required  
to Breakeven (%) 

Sole-Source (100:0) 20.97 10.39 n/a 
Competition (50:50) 23.38 12.04 26.45 
Competition (PW 70:GE/RR 30) 23.29 12.00 26.00 
Competition (PW 30:GE/RR 70) 23.31 12.01 26.15 

Average of competition results: 23.33 12.02 26.20 
Variance of competition results: 0.0022 0.00043 0.053 

Standard deviation of competition results: 0.047 0.021 0.23 
*Total cost = Sum of remaining SDD, production, and initial standup costs 
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As shown in Table 9.  , there is little variation between the 50:50 case and the two 

70 percent scenarios.  Based on this limited analysis, it can be reasonably predicted that 

the percentage of engine production awarded does not significantly impact the 

comparison of life-cycle costs and breakeven savings requirements until it approaches the 

sole-source scenario.  Similarly, it is implied that the magnitude of learning rate savings 

is not significantly affected until the sole-source case.  In other words, the “competition 

scenario” is adequately represented by either the 50:50 or 70 percent scenarios.   
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VI. RECOMMENDATIONS AND CONCLUSIONS 

The recommendation of this BCA is to continue to fund and execute the alternate 

engine program for the Joint Strike Fighter.  This recommendation is based on the 

quantitative and qualitative analysis performed in this study, which is summarized below.   

This study finds that the alternate engine program requires an additional 

investment of $2.41 billion over the sole-source scenario.  This investment, which 

includes the remaining RDT&E work, production costs, and initial standup costs, can be 

largely recouped, however, through the savings that can be gained during the course of 

competition.  As demonstrated during the Great Engine War, competition is most 

effective on programs with high total volume over the life of the program and high 

annual production rates; a depiction that perfectly characterizes the F-35 engine program.  

Beyond the comparison of life-cycle costs, there are several key qualitative 

factors that must be considered to fully assess the value of the alternate engine program.  

These include the following:   

• International Alliances and Foreign Military Sales:  Unlike most other DoD 

programs, the JSF program relies on several key international alliances.   

Competition strengthens these alliances, without which the program could 

lose valuable development funding and foreign military sales.   

• Industrial Base:  The JSF engine is the only tactical fighter engine program 

planned for the foreseeable future.  Cancelling the second engine reduces the 

number of tactical engine suppliers to one, creating undesirable risk given the 

magnitude of the JSF program.   

• Reliability and Performance:  The JSF program is of unprecedented size.  

Relying on a sole engine producer increases the reliability and performance 

risk of the engine.  Moreover, the F135 engine is based on the F-22 engine 

which is still immature and not meeting its reliability goals.  Therefore, basing 
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decisions to cancel the F136 engine on comparisons to the F-22 engine is not 

prudent.    

• Cost Control:  History has shown that cost control is most effective in 

competitive environments.  Considering the magnitude of the JSF program, 

poor cost control could be devastating and negatively affect Congress’s ability 

to fund other programs required for the nation’s defense.   

The bottom line is that even though the alternate engine requires an additional 

investment of $2.41 billion, most of that investment will likely be recouped, and the 

benefits to be gained through increased engine reliability and performance, increased 

foreign military sales, strengthened international alliances, a strengthened industrial base, 

and improved cost control more than outweigh the arguments against the alternate engine 

program.  If executed carefully, using proper oversight and keeping in mind lessons 

learned from the Great Engine War, the F-35 engine program can be both effective and 

affordable in a competitive acquisition environment. 
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APPENDIX A:  LIFE-CYCLE COST COMPARISON   

Sole‐Source Production Scenario

Fiscal Yr 2008 2009 2010 2011 2012 2013 2014 2015 2016
Year 1 2 3 4 5 6 7 8 9
# Engines Produced 126 127 126
Cumulative # of Engines 557 684 810
Cost ($Million) 96.89026 344.4375 385.9241 452.1073 631.7687 796.1696 726.2554 719.7282 704.2996
Discounted Cost ($Million) 90.55165 300.845 315.029 344.9105 450.4423 530.5214 452.2753 418.8883 383.0923

Fiscal Yr 2017 2018 2019 2020 2021 2022 2023 2024 2025
Year 10 11 12 13 14 15 16 17 18
# Engines Produced 127 126 127 126 127 126 127 126 127
Cumulative # of Engines 937 1063 1190 1316 1443 1569 1696 1822 1949
Cost ($Million) 701.7064 689.2399 688.609 677.824 678.3563 668.6578 669.9531 661.0161 662.8467
Discounted Cost ($Million) 356.7119 327.4529 305.7506 281.2728 263.0783 242.3523 226.9363 209.2608 196.1124

Fiscal Yr 2026 2027 2028 2029 2030 2031 2032 2033 2034
Year 19 20 21 22 23 24 25 26 27
# Engines Produced 126 127 126 127 126 127 126 127 126
Cumulative # of Engines 2075 2202 2328 2455 2581 2708 2834 2961 3087
Cost ($Million) 654.4744 656.6986 648.7625 651.2869 643.6985 646.4581 639.1539 642.102 635.0347
Discounted Cost ($Million) 180.9676 169.7034 156.6846 147.004 135.7862 127.447 117.7636 110.5671 102.1964

16.77346
6.943604

TOTAL PRODUCTION COST ($Billion) =
NPV ($Billion) =

DATA MASKED
(Annual LRIP production levels are for official use only)
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Data Source: LRIP engine quantities obtained from 461 FLTS F-35 Capabilities Brief (2006)   

50:50 Competition Production Scenario

Pratt & Whitney (50%)
Fiscal Yr 2008 2009 2010 2011 2012 2013 2014 2015 2016
Year 1 2 3 4 5 6 7 8 9
# Engines Produced 64 63 63
Cumulative # of Engines 310 373 436
Cost ($Million) 96.89026 344.4375 198.5856 232.0257 326.8823 411.066 384.8864 373.1341 368.4827
Discounted Cost ($Million) 90.55165 300.845 162.105 177.0113 233.0625 273.9106 239.6879 217.1674 200.4302

Fiscal Yr 2017 2018 2019 2020 2021 2022 2023 2024 2025
Year 10 11 12 13 14 15 16 17 18
# Engines Produced 63 63 64 63 63 63 63 64 63
Cumulative # of Engines 499 562 626 689 752 815 878 942 1005
Cost ($Million) 364.5539 361.1579 363.8335 355.4661 353.0673 350.884 348.8818 352.5279 345.2918
Discounted Cost ($Million) 185.3207 171.5835 161.5464 147.5058 136.9256 127.1765 118.1783 111.6013 102.1594

Fiscal Yr 2026 2027 2028 2029 2030 2031 2032 2033 2034
Year 19 20 21 22 23 24 25 26 27
# Engines Produced 63 63 63 64 63 63 63 63 64
Cumulative # of Engines 1068 1131 1194 1258 1321 1384 1447 1510 1574
Cost ($Million) 343.6935 342.1963 340.7885 344.8383 338.1842 336.9928 335.8596 334.7792 339.0367
Discounted Cost ($Million) 95.03412 88.43002 82.30488 77.83455 71.33891 66.437 61.88185 57.64747 54.56131

8.988424 17.65373
3.812239 7.305257

COMBINED PRODUCTION COST ($B) =
COMBINED NPV ($B) =

P&W TOTAL PRODUCTION COST ($B)=
P&W NPV ($B)=

DATA MASKED
(Annual LRIP production levels are for official use only)

 
Data Source: LRIP engine quantities obtained from 461 FLTS F-35 Capabilities Brief (2006)   
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50:50 Competition Production Scenario (continued)

GE / Rolls‐Royce (50%)
Fiscal Yr 2008 2009 2010 2011 2012 2013 2014 2015 2016
Year 1 2 3 4 5 6 7 8 9
# Engines Produced 64 63 63
Cumulative # of Engines 249 312 375
Cost ($Million) 0 0 220.9383 247.2215 339.8822 428.0025 392.0368 378.6189 372.9726
Discounted Cost ($Million) 0 0 180.3514 188.6041 242.3313 285.1961 244.1408 220.3596 202.8724

Fiscal Yr 2017 2018 2019 2020 2021 2022 2023 2024 2025
Year 10 11 12 13 14 15 16 17 18
# Engines Produced 63 63 64 63 63 63 63 64 63
Cumulative # of Engines 438 501 565 628 691 754 817 881 944
Cost ($Million) 368.3481 364.4387 366.7634 358.0368 355.3862 352.9949 350.8178 354.3424 346.949
Discounted Cost ($Million) 187.2495 173.1422 162.8473 148.5726 137.8249 127.9416 118.8341 112.1757 102.6497

Fiscal Yr 2026 2027 2028 2029 2030 2031 2032 2033 2034
Year 19 20 21 22 23 24 25 26 27
# Engines Produced 63 63 63 64 63 63 63 63 64
Cumulative # of Engines 1007 1070 1133 1197 1260 1323 1386 1449 1513
Cost ($Million) 345.2394 343.6445 342.1503 346.1429 339.399 338.1455 336.956 335.8245 340.0507
Discounted Cost ($Million) 95.46157 88.80426 82.63377 78.12901 71.59516 66.66424 62.08386 57.82746 54.72449

8.665303 17.65373
3.493017 7.305257

COMBINED PRODUCTION COST ($B) =
COMBINED NPV ($B) =

GE/RR TOTAL PRODUCTION COST ($B)=
GE/RR NPV ($B)=

DATA MASKED
(Annual LRIP production levels are for official use only)

 
Data Source: LRIP engine quantities obtained from 461 FLTS F-35 Capabilities Brief (2006)   



 
 

52

 
 
 
 
 
 
 
 

 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK  



 
 

53

APPENDIX B:  BREAKEVEN ANALYSIS 

BREAKEVEN ANALYSIS (50:50 Scenario)

SOLE SOURCE Cost ($B) NPV ($B) Goal: NPV Sole Source = NPV Competition (50:50)
SDD 1 0.85 By changing the percentage of savings achieved during

Production 16.77346 6.943604 production due to competition. 
Initial Support Cost 3.2 2.6

TOTAL 20.97346 10.3936 0.25

INTIAL
Competition (50:50) Cost ($B) NPV ($B) Cost ($B) NPV ($B)

SDD 2.4 2.03 2.4 2.03
Production 17.65373 7.305257 13.57532 5.75381

Initial Support Cost 3.33 2.7 3.33 2.7
TOTAL 23.38373 12.03526 19.30532 10.48381

SAVINGS REQUIRED TO BREAKEVEN =

SDD

TOTAL

Competition (50:50)

Production
Initial Support Cost

BREAKEVEN
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BREAKEVEN ANALYSIS (P&W 70 : GE/RR 30 Scenario)

Sole Source Cost ($B) NPV ($B) Goal: NPV Sole Source = NPV Competition (70:30)
SDD 1 0.85 By changing the percentage of savings achieved during

Production 16.77346 6.943604 production due to competition. 
Initial Support Cost 3.2 2.6

TOTAL 20.97346 10.3936 0.260048

INTIAL
Competition (70:30) Cost ($B) NPV ($B) Cost ($B) NPV ($B)

SDD 2.4 2.03 2.4 2.03
Production 17.5564 7.267615 13.33938 5.6636

Initial Support Cost 3.33 2.7 3.33 2.7
TOTAL 23.2864 11.99762 19.06938 10.3936

SAVINGS REQUIRED TO BREAKEVEN =

BREAKEVEN
Competition (70:30)

SDD
Production

Initial Support Cost
TOTAL  
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BREAKEVEN ANALYSIS (P&W 30 : GE/RR 70 Scenario)

Sole Source Cost ($B) NPV ($B) Goal: NPV Sole Source = NPV Competition (30:70)
SDD 1 0.85 By changing the percentage of savings achieved during

Production 16.77346 6.943604 production due to competition. 
Initial Support Cost 3.2 2.6

TOTAL 20.97346 10.3936 0.261535

INTIAL
Competition (30:70) Cost ($B) NPV ($B) Cost ($B) NPV ($B)

SDD 2.4 2.03 2.4 2.03
Production 17.57569 7.280031 13.32952 5.6636

Initial Support Cost 3.33 2.7 3.33 2.7
TOTAL 23.30569 12.01003 19.05952 10.3936TOTAL

SAVINGS REQUIRED TO BREAKEVEN =

BREAKEVEN
Competition (30:70)

SDD
Production

Initial Support Cost
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APPENDIX C:  ANALYSIS OF SEVENTY PERCENT PRODUCTION CASE 

70:30 Competition Production Scenario

Pratt & Whitney (70%)
Fiscal Yr 2008 2009 2010 2011 2012 2013 2014 2015 2016
Year 1 2 3 4 5 6 7 8 9
# Engines Produced 89 88 89
Cumulative # of Engines 384 472 561
Cost ($Million) 96.89026 344.4375 198.5856 232.0257 456.7803 576.4227 527.4156 512.5928 511.2434
Discounted Cost ($Million) 90.55165 300.845 162.105 177.0113 325.678 384.0948 328.4479 298.3337 278.0825

Fiscal Yr 2017 2018 2019 2020 2021 2022 2023 2024 2025
Year 10 11 12 13 14 15 16 17 18
# Engines Produced 88 89 88 89 88 89 88 89 88
Cumulative # of Engines 649 738 826 915 1003 1092 1180 1269 1357
Cost ($Million) 499.6086 500.203 490.2033 491.8547 482.8548 485.1619 476.8395 479.5883 471.757
Discounted Cost ($Million) 253.9757 237.6428 217.6561 204.1022 187.2594 175.845 161.522 151.8254 139.5759

Fiscal Yr 2026 2027 2028 2029 2030 2031 2032 2033 2034
Year 19 20 21 22 23 24 25 26 27
# Engines Produced 89 88 89 88 89 88 89 88 89
Cumulative # of Engines 1446 1534 1623 1711 1800 1888 1977 2065 2154
Cost ($Million) 474.8205 467.3628 470.66 463.4968 466.9731 460.0488 463.6655 456.9392 460.6686
Discounted Cost ($Million) 131.2918 120.7754 113.6705 104.6173 98.50651 90.69706 85.43 78.68288 74.13556

12.0191 17.5564
4.972362 7.267615

COMBINED PRODUCTION COST ($B) =
COMBINED NPV ($B) =

P&W TOTAL PRODUCTION COST ($B)=
P&W NPV ($B)=

DATA MASKED
(Annual LRIP production levels are for official use only)

 

Data Source: LRIP engine quantities obtained from 461 FLTS F-35 Capabilities Brief (2006)   



 
 

58

70:30 Competition Production Scenario (continued)

GE / Rolls‐Royce (30%)
Fiscal Yr 2008 2009 2010 2011 2012 2013 2014 2015 2016
Year 1 2 3 4 5 6 7 8 9
# Engines Produced 38 38 38
Cumulative # of Engines 174 212 250
Cost ($Million) 0 0 220.9383 247.2215 204.3339 256.6354 238.6027 234.7569 231.6536
Discounted Cost ($Million) 0 0 180.3514 188.6041 145.6872 171.007 148.5898 136.6306 126.0042

Fiscal Yr 2017 2018 2019 2020 2021 2022 2023 2024 2025
Year 10 11 12 13 14 15 16 17 18
# Engines Produced 38 38 38 38 38 38 38 38 38
Cumulative # of Engines 288 326 364 402 440 478 516 554 592
Cost ($Million) 229.0574 226.8289 224.8792 223.1477 221.5917 220.1799 218.8883 217.6987 216.5966
Discounted Cost ($Million) 116.4412 107.7648 99.84904 92.59836 85.9371 79.80331 74.14504 68.91784 64.08312

Fiscal Yr 2026 2027 2028 2029 2030 2031 2032 2033 2034
Year 19 20 21 22 23 24 25 26 27
# Engines Produced 38 38 38 38 38 38 38 38 37
Cumulative # of Engines 630 668 706 744 782 820 858 896 933
Cost ($Million) 215.5704 214.6104 213.7091 212.8597 212.0569 211.2959 210.5727 209.8839 203.7286
Discounted Cost ($Million) 59.607 55.45942 51.61354 48.04525 44.73275 41.65628 38.79785 36.14106 32.78612

5.537298 17.5564
2.295253 7.267615

COMBINED PRODUCTION COST ($B) =
COMBINED NPV ($B) =

GE/RR TOTAL PRODUCTION COST ($B)=
GE/RR NPV ($B)=

DATA MASKED
(Annual LRIP production levels are for official use only)

 
Data Source: LRIP engine quantities obtained from 461 FLTS F-35 Capabilities Brief (2006)   
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30:70 Competition Production Scenario

Pratt & Whitney (30%)
Fiscal Yr 2008 2009 2010 2011 2012 2013 2014 2015 2016
Year 1 2 3 4 5 6 7 8 9
# Engines Produced 38 38 38
Cumulative # of Engines 236 274 312
Cost ($Million) 96.89026 344.4375 198.5856 232.0257 195.8521 248.6021 232.7282 229.9651 227.6136
Discounted Cost ($Million) 90.55165 300.845 162.105 177.0113 139.6398 165.6541 144.9314 133.8418 123.8067

Fiscal Yr 2017 2018 2019 2020 2021 2022 2023 2024 2025
Year 10 11 12 13 14 15 16 17 18
# Engines Produced 38 38 38 38 38 38 38 38 38
Cumulative # of Engines 350 388 426 464 502 540 578 616 654
Cost ($Million) 225.5694 223.7632 222.1468 220.6849 219.3514 218.1261 216.9933 215.9403 214.9569
Discounted Cost ($Million) 114.668 106.3083 98.63582 91.57639 85.06826 79.05894 73.50313 68.36116 63.59799

Fiscal Yr 2026 2027 2028 2029 2030 2031 2032 2033 2034
Year 19 20 21 22 23 24 25 26 27
# Engines Produced 38 38 38 38 38 38 38 38 37
Cumulative # of Engines 692 730 768 806 844 882 920 958 995
Cost ($Million) 214.0348 213.167 212.3476 211.5717 210.835 210.1339 209.4652 208.8261 202.7424
Discounted Cost ($Million) 59.1824 55.0864 51.28472 47.75452 44.47499 41.42719 38.59378 35.95891 32.62742

5.877356 17.57569
2.625555 7.280031

COMBINED PRODUCTION COST ($B) =
COMBINED NPV ($B) =

P&W TOTAL PRODUCTION COST ($B)=
P&W NPV ($B)=

DATA MASKED
(Annual LRIP production levels are for official use only)

 
Data Source: LRIP engine quantities obtained from 461 FLTS F-35 Capabilities Brief (2006)   
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30:70 Competition Production Scenario (continued)

GE / Rolls‐Royce (70%)
Fiscal Yr 2008 2009 2010 2011 2012 2013 2014 2015 2016
Year 1 2 3 4 5 6 7 8 9
# Engines Produced 89 88 89
Cumulative # of Engines 322 410 499
Cost ($Million) 0 0 220.9383 247.2215 473.6396 589.0555 535.393 518.5825 516.114
Discounted Cost ($Million) 0 0 180.3514 188.6041 337.6985 392.5125 333.4159 301.8197 280.7318

Fiscal Yr 2017 2018 2019 2020 2021 2022 2023 2024 2025
Year 10 11 12 13 14 15 16 17 18
# Engines Produced 88 89 88 89 88 89 88 89 88
Cumulative # of Engines 587 676 764 853 941 1030 1118 1207 1295
Cost ($Million) 503.6269 503.6846 493.2106 494.5525 485.2495 487.3578 478.8242 481.436 473.4487
Discounted Cost ($Million) 256.0184 239.2969 218.9914 205.2217 188.1881 176.6409 162.1943 152.4103 140.0764

Fiscal Yr 2026 2027 2028 2029 2030 2031 2032 2033 2034
Year 19 20 21 22 23 24 25 26 27
# Engines Produced 89 88 89 88 89 88 89 88 89
Cumulative # of Engines 1384 1472 1561 1649 1738 1826 1915 2003 2092
Cost ($Million) 476.413 468.835 472.0576 464.7986 468.2172 461.2145 464.7857 457.994 461.6865
Discounted Cost ($Million) 131.7322 121.1559 114.0081 104.9112 98.76896 90.92688 85.63638 78.8645 74.29939

11.69834 17.57569
4.654476 7.280031

COMBINED PRODUCTION COST ($B) =
COMBINED NPV ($B) =

GE/RR TOTAL PRODUCTION COST ($B)=
GE/RR NPV ($B) =

DATA MASKED
(Annual LRIP production levels are for official use only)

 
Data Source: LRIP engine quantities obtained from 461 FLTS F-35 Capabilities Brief (2006) 
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